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Abstract

A mechanical procedure using trial and error techniques is outlined
which vill verify, in a large number of cases, the validity of an argument
form expressed in quantification theory. Combinational processes have been
used to a minimum extent. Techniques of implementation for a digital com-
puter are also discussed.
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AN APPLICA'TIOI: OF HEURISTIC PROGRAMITG TO THE PROM24

OF THEORE PROVING BY MACHflE

l"7RODUCTION

The hope of using "mechanical methods" to achieve significant results in
mathematics, such as obtaining mathemathical theorems, seemed on the verge of
realization vhen Hilbert noted that all classical mathematics could be expres-
sed in the language of quantification theory. The ability to determine
whether or not a cuantificational formula (theorem) follows logically from a
finite set of given quantificational formulas (axioms), was the central prob-
lem in the hoped for process. This central problem is known now as the
Entscheidungs problem. The subsequent work of Turing, Church and others in
the 1930s, •which showed the unsolvability of this problem resulted in the
feeling that "mechanical methods" (which implies our modern computers) could
not be used to resolve "significant" problems in mathematics. Renewed inter-
est in this topic has arisen as a result of recently developed methods which
will mechanically (effectively) determine that a quantificational argument is
valid if and only if it is valid, but will be inconclusive if the quantifi-
cational argument is not a logical truth. Also, effective procedures have
been developed which will give either an affirmative or negative answer to
this question for a significant subset of the set of all quantificational
argument s.

There have been a nunber of attempts to produce a workable machine pro-
ram, makiing use of the available procedures, but each has run into consider-

able difficulty writh respect to the propositional (truth-functional) tests
required by the methods. Most of the theoretical discussions of the proof
procedures, for example, Cuine's, 1 point to truth-tables to resolve the prob-
lems involving the truth-ftunctional tests. Although this is theoretically an
effective process to solve all questions with respect to truth values of
propositional formulas for use on computers this is an impractical approach,
since the number of rows on a truth-table increases exponentially with the
nunber of different propositional letters in the given formula under test.
To date the best app-roach to this problem seems to be that of Davis and
Putnam. 2  They have presented a procedure for testing truth-functional forms
that, with respect to use on a computer, far surpassgs the truth-t le method,
and is more practical than the methods used by Wang• and Gilmore.* But even
the Davis-Putnam 2 test is, in general, quite time consuming, and is still
the phase of the overall procedure most in need of improvement. Interesting
70ork on this problem is now being done at 134 by Dr. B. Dunham.

This report is an application of a trial and error technique that simu-
lates the way a human being would attack the problem by extracting additional
information from a previous phase of the process to reduce \the propositional
tests to a point where even the truth-table method might be used. The methods
used in this approach (heuristics) do not give rise to a procedure theoreti-
callt as powerful as the Davis-Putnam2 approach. However, improved heuristics
may increase the power of this machine procedure, if it is not already suf-
ficiently powerfia, to the point where the reduced efforts required in truth-
functional testing do warrant the reduced processing power (in the sense
that there are certain quantificational arguments that are valid and unprov-
able by the machLe procedure). The question of whether or not the present
procedure is too limited has not been adequately investigated.
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.Heuristic e " in Programing

Practically all problems solved by modern electronic digital computers
today have associated with them an effective "algorithm", that is, a
c:zstematic procedure which, when presented vith the problem as input, is
guaranteed to produce a solution as output. There are, however, interest-
inC problem~s for which no algorithm is lmo.w, or no efficient one may be
1_m•,, or no algorithm is possible. Even though we may not have an algo-
rithb for a gi'.cn problem, we may at least know how to recognize a solution,
as such, should one appear. A minim== requirement associated vith problem
solving, whether by man or machine, seems to be: If any "solution" should
appear, a "method" must exist for deciding whether or not it really is a
solution.

Usually ve shall have partial information about how to produce a
solution to such problems. For example, as a result of successful hman
atte-=ts at solutions in the nast for similar problems, we may have enough
i-ormaTtion -o enable a pa_-ial decision procedure. That is, a systematic
nrocedure that can never guarantee solutions to all questions about the
.oble �::'or vnich it was designed, but nevertheless, it may be pIowerful

enou" to handle successfully a large percentage of problems presented to
it. One sinIly described handling of such problems by machine is to have
the nachine search and test in a systematic way all possible expressions

hat could be solutions Even though we .mow, something about the syntactic
forf cf a solution, such blind, brute force enumeration almost always in-
-.olvez near-astronomical niz.bers of trails, since these methods usually are
little more than the s:--natic testing of all expressions in some language.
:'zzer - , it is us'&ui-y possible to extract added information from the
g.ven rrohlern ".zer investigation by the machine, and thereby reduce the
r-=_Der of trial attempts at a solution to a reasonable number.

Before discussing the machine procedure of this report, a detailed
discussion of the fundamental notions of quantificational logic needed in
t-7e follo-in& discussions -mill be developed.

Definition cf 7ell-Formed Formula in Quanti-fficaticnal Logic

Z.n this section, follmring the presentations in Patton5 and ',ang, 3 we
r-ill. present a definition of the syntactical properties of the language of
Vaaen-tificaticnal logic. The elemental symbols that form the alphabet of
the laznguage are classified as followrs:

Logical connectives: ". ", & 7, ! , V

Statement lett-ers: k A ", B , , ... .

Predicate letters: G ', N n1 i, .. .,

1ndividual names: " a", b , c

individual va i ables : • ! V, " -. ", " Z ',

C.zntifiers: "(B:) ", where x is anr individual variable.
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Since statement letters and predicate letters will always be followed
by different syntactical forms (predicate letters will be follored immediate-
ly on the right by individual names, individual variables or both, statement
letters will never be immediately followed on the right by these symbols),
machine procedures do not demand the set of statement lette• be mutually ex-
clusive from the set of predicate letters. It will be essential, howeverI,
that individual names and individual variables belong to mutually exclusive
sets. These points will be discussed in more detail later.

From the set of all possible finite strings of these symbols, a unique
subset will be called well-formed formulas (wff' s) and will be defined re-
cursively as follows:

1. A statement letter is a wff.

2. A string consisting of a predicate letter followed by any number
of individual names and/or individual variables in any combination is a vff,
and the variables occurring in it are called free variables.

3. If S is a wff, then so is I S (called the negation of S).

4. If S and T are ifff's, then so are ( S & T ), ( S V T ), and
( S = T), and the free variables of S and T are also free in these wff's.
(They are called, respectively, the conjunction of S and T, the disjunction
of S and T, and the innlication of T by S.)

5. If S is a wff and x is any ariable, then provided "(Ex)" or "(x)"
does not occur in S, then (Ex)S and (W)S are wff's, and the variables other
then x in S that occurred free still occur free. x in S is now said to
be bound by the quantifier.

Interpretation of Puantificational Formulas

Quantificational for•rlas as such cannot be said to be true or false
until an interpretation is presented. An interr-retation of a quantifi-
cational formula S vill consist of the following assignments:

1. To each statement letter in S, a truth value.

2. To the quantifiers of S, a set of individual elements called a
universe.

3. To each free variable of S, a member of the universe.

4. To each predicate, with its variables and individual names, a truth
value assigned to each string obtained by substituting individual elements
from the universe for the variables.

Once an interpretation has been made, the truth value of the quantifi-
cational formula is determined by the following recursive rules:

1. A formula without logical connectives or quantifiers obviously has
a truth value when its symbols have been interpreted.
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2. (S V T) is true if and only if at least one of S or T is true.
(S & T) is true if and only if both S and T are true. (S *T) is false if
and only if S is true and T is false. ~ S is true if and only if S is
false.

3. If x is any variable and (x)S is a wff, then (x)S is true for a
given universe if and only if S is true under every possible interpretation
of x in the given universe.

2. (Ex)S is true in a given universe if and only if S is true for at
least one interpretation of x in the given universe.

Since statement letters "disappear" as soon as an interpretation is
given, they vill not affect any of the problems with which we will be con-
cerned. 17e shall assume from here on that statement letters do not appear in
any formula.

The effect of statement letters in any formual is accounted for accord-
ing to the following replacement rules:

1. (a) replace P- T by F,

(b) replace ~ F by T,

2. (a) replace T &B or B &T by B,

(b) replace F & B or B &_F by F,

. (a) replace T V_ B or B V T byT,

(b) replace F V_ B or B V F by B,

4. (a) replace T B byB,

(b) replace B D_ F by -1 B,

(c) replace B- T or F B by T.

Definition Based on the Iotion of an Interxretation of a

Quantificational Formula

1. A non-empty interpretation of a %wff is one that assigns to the
quantifiers of the vwff a non-empty universe. From ncw on we shall assume
irhen using the term "interpretation" a non-empty one.

2. A wff S is a logical truth if and only if S comes out true on every
interpretation.

3 A wff S is consistent if and only if S comes out true on some in-
terpretation.

4. T•o wff's S anld T are logically equivalent if and only if ( (S>T)
& (T = S) ) is a logical truth.

5. A finite set of wff's is consistent if and only if any conjunction
of all the wff's is consistent.



6. An argument is valid if and only if the set of Vff's that comprises

its premise, and the negation of its conclusion, is inconsistent.

Prenex Normal Form

Given any wfT S it is always possible to find a wff T which is logically
equivalent to S, and T is of the form (QI) (Q2)...(Qn)(T'), where (T') con-
tains no quantifiers. Qi, i w i, 2, ... , n, is a quantifier (either an (Ex)
or (x)). When any wff is in the form of T (that is, all quantifiers on the
left), it is said to be in prenex normal form. For a further discussion of
this topic see reference 6.

Quine's Proof Procedure for Quantificational Logic

The method to be described now, forms the basis of =y machine procedure.
It was presented in detail in the original paper by QuineA which appeared in
the Journal of Symbolic Logic in 1955. The method is a test for the incon-
sistency of a finite set of quantificational formulas. That is, it can prove
any inconsistent set of formulas to be inconsistent, but it cannot prove any
consistent set of formulas to be consistent. We can use the method to prove
the validity of argunents since an argument is valid if and only if the con-
junction of the set of formulas representing the premises of the argument and
the negation of the conclusion of the argumnent is inconsistent. This can be
seen more clearly by considering the following: let A be a set of formulas
representing the premises of an argument, and let B represent a conclusion.
1We know that A, and therefore B, is a valid argument if and only if any con-
junction of all the premises and the negation of the conclusion is incon-
sistent. Since, from truth-functional logic, p & ^-* q is the negation of
p : q, then if p & -vq is inconsistent, then p - q must be logical truth.

The first requirement of the method is that each formula of the set
being tested for inconsistency be put into prenex normal form in such a man-
ner that no variable letter that occurs in any formula as an existential
quantifier occurs free anywhere, or as another existential quantifier in the
set of formulas. If we now have a set of formulas P1 , P2 , •"", Pn satisfying
these conditions, we now construct for each Pi and Fi, called the functional
normal form, as follows: delete the leftmost existential quantifier Pi and
subscribe Xlx2... .Xk to each variable that it bound, where the universal
quantifier that was deleted is (xl) (x2) ... (xk), in that order. Continue
the above process with each next leftmost existential quantifier of Pi finally
arriving at the Fi. A term with subscripts in one of the F's is called a
function term. What is called the lexicon for the set of P's is a set of
elements determined as follows:

1. All variables which occur free and subscriptless in the F's, or if
there are none, then the letter a.

2. All results of uniformly replacing the subscript letters of function
terms by members of the lexicon.

A lexical instance of F results when the quantifiers of F are dropped
and the variables they boundare replaced by members of the lexicon. The
subscript letters of the function terms are to count as bound variables for
purposes of this definition. The method is based on the principle that a set
of quantificational formulas is inconsistent if and only if some lexical
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instance of the set is truth-functionally inconsistent. The completeness and

soundness of the method ae discussed in references 1, 5, and 7.

The Machine Procedure

The approach we will take in describing the machine procedure for this
project will be as follows: we will first describe the mechanical processes
involved, in a natural language (English) assuming certain machine processors
available to handle the manipulations necessary on the strings of information.
The machine capabilities will not always be specifically mentioned in this
section. Later we will concentrate on the machine capabilities demanded by
our problem.

a. The Machine Formation of the Functional Norma. Forms

The procedure for constructing functional normal forms for any finite
set of quantificational formulas is completely deterministic and poses little
challenge to anyone faniliar with the usual processing involved with mechani-
cal string languages. To bring out the "mechanical" features of the follow-
ing manipulations which will be performed on our information, we shall assume
certain registers available and certain operations such as formation and
deletion of lists, scanning strings, and concatenation and deconcatenation.
All of these, and many others, shall be discussed in detail when we consider
the general syntactical mechanical processors made necessary, or just desira-
ble, for a machine realization for our problem. We shall introduce informal-
ly each operation and device as needed. M~any will not be discussed directly
in this section, but will be implied by the required manipulations.

We assume the Pi's are stored in a general storage area and can be call-
ed into a general working register A at vill. We assume an auxiliary regis-
ter S which will be used in the manner of a "scratch pad". Both of these and
any other we may need will be registers of flexible size. Assume the regis-
ters are empty, and bring P1 into A-register. Scan P1 from left to right as
follows: if the symbols on the extreme left are those of an existential
quantifier (left parenthesis, "E", variable name, right parenthesis), then
they are deleted. Note here, we are implying the ability to recognize a
variable name symbol, therefore, a list must be available of variable names,
and a comparison operation is performed. If these first symbols are not those
of an existential quantifier, then the machine asks whether or not they are
the symbols of a universal quantifier. If they are not, then P1 is already
in functional normal form and is now considered FI. We store F, and call P2
into the A-register. But, if these symbols are those of a universal quanti-
fier, we do not delete this quantifier, but place a copy of its variable name
in auxiliary register S. We then move our scan to the symbols to the right
of the quantifier. From now on, every time we meet a universal quantifier in
our scan, we concatenate its variable name to the right of the contents of
the S-register. Also, from now on, each time we meet an existential quanti-
fier we delete it and concatenate to each variable it bound in the formula,
the symbol "/" followed by the contents of the S-register. We do not erase
the contents of the S-register during this concatenation operation. The above
procedures are continued until something other than a quantifier is met at
which time we erase the S-register, store the contents of A in F (the name
of the location in general storage containing Fi is "Fi"), and call the con-
tents of P2 into the A-register. These procedures are continued until all
the P's have been transformed into F's.
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b. Problems of Lexicon Formation

Nany of the processes that ire shall consider in this section and
especially in the next section on "optimal instantiation" are difficult, if
not impossible, to consider in general - let alone solve in general. The
best strategy that we have found to attack these problems is to design pro-
cedures that may work in a large number of cases, and then through empirical
results we can analyze our results and modify our design. or completely
rebuild them, if the analysis indicates that such is desirable, or necessary
(and of course possible). This is in line with what many researchers, in
artificial intelligence systems, consider to be the best strategy for their
problems, that is to postulate a system capable perhaps of exhibiting an
interesting behavior, then to explore it experimentally and theoretically
(modifications being made, of course, as a result of empirical data). Ex-
amples of such projects are the neural nerve net experiments of Holland and
his associates, the work of Amarel in automatic theory formation processes,
and Newe ll, Shaw, and Simon' s work on the Logic Theory Machine and the
General Problem Solver.

The system being discussed in this reort has undergone some modification.
The present section discusses the problems encountered when the system was
designed to enumerate a finite number of lexicon members. The number depend-
ed uoon the "comnlexity" of the set of P's. Although this process is no
longer designed into the system, we feel it advantageous to discuss it here
so as to provide additional insight into the progra-ming problems involved,
to provide an additional motivation for the processes presently chosen in the
s-stem, and finally to illustrate further how blind enumeration, which often
gets out of hand, can be replaced by strategic "short-cuts" seen as a result
of patterns in the fornjulas.

The le7xicon given in the introduction contains all unbound, subscript-
less variables. This was easily programmed: the F's ,,ere placed in the
A-register snd each quantifier letter (all of course are universal) is
placed on a previously empty list 0. During a left to right scan of the
formula proper, each variable name is tested against the entries on Q, so that
if no comparison is found, and the variable under test is not followed im-
mediatelý by "/", then it is placed on a list L iwhich represnts the lexicon.
This process continued through all the F's gives all lexical member names
obtained from unbound, subscriptless variables. After testing all the F's,
if list L is empty, "x" is placed on list L, in line with the theory of our
lexicon. The recursive process involved in extending the lexicon is to now
replace all subscript letzers by members of the lexicon. This process can
generate a representive lexicon, that is, one that is complete enough to solve
a large percentage of problems, only if all subscript strings are of length 1
(,rith perhaps only one of length 2). When an attempt is made to generate a
lexicon for a set of formulas in which appear subscript strings of lengths 2,
3, or more, the number of elements needed in the lexicon becomes extremely
large. This not only makes the generation of the lexicon difficult, but makes
the rest of the, machine procedure very inefficient.

As an example of the lexicon difficulties consider the example of the
two function terms Hx- and GUvVz. Suppose "a" was previously determined to
be a member of the lexicon, therefore, XZa, and uaaa, are members of the lex-
icon. The following are also members: xxaa, a , ... ,

see a
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if one mak.es the attempt, a method of enumeration is most difficult, if not
a .... z...e, to program in general. Imagine the difficulty of four or
five multisubscri.mted predicates!

c. * ard Otinal Universal Instantiation

TZe uarpose of an attempt toward optimal instantiation of the function-
a! ncrm_2. fcrs is to instantiate in such a way so as to get all string- of
le::ica2. members folloring like predicates to be identical. This is desirable
z-nce, the more identical lexical instance terms we have in a lexical instan-
tt....on of the set of F's, the greater will be our chance of arriving at a
tr-,h-functiona: contradiction which is our overall goal. This phase of the
mach.ne procedure proceeds as follows: a scan is made of the functional
n:-l forms asnd lists are formed, each containing like predicates followed
by the strin7s of symbols that appeared after each predicate. During the
fcr-at`on of the lists a parenthesis is placed on each side of a symbol that
czntaius a bo-zi mariable (all subscripted terms, and bound unsubscripted
e...... ._long ,ith each en.tz- in the lists is placed its location in the set

cf 1' , tha-z i, the rarticular_ F fro= w..hich the nredicate and string i.-as
e.....cteca, an the ith occurrence of that particular predicate taken from
.ef- , rz:- zthni the F. For example, "G(x)(un)w, F2, 3" w.ould be typical,

_17... near the third occurrence of .redicate G "ithin F 2 , containing the
"-.iabie w, the bo"_,d variable x, end the subscripted term Ux. Mtese

h =. - rc n=býcrodlt 1 i =m, ,'here m is the nrber of Predicate letters that
L~ -Lu the ze- of _'s.

co- of lists 1 th-rough n is made. The reason for this is that in-
s-t=azion- "wihl be made and the results tested: if they fail to produce
a contradictio: -n the final (truth-functional) test, a different instant-
iatiz.;--.1 'be made and azgaLn tested. ',Te must have a master cony of the

sscs from w*.-ich wve can :make copies for use in our attempts at instantiation.

co,-r of ist 1 is considered first with an hation of the first
s: -bo 1 f: 'inz each predicate letter. An attempt is now to be made to. - - e of identical symbols we can substitute into this position

:: e:lecal instantiation. Obviously, -if more than one unbound variable type
a-n-.arz _*.-. this first 'osition after the predicate letters, these can never
be made identical. if, however, at least one unbound variable appears along
wituh subscripted terms, then a decision must be made as to the choice of
is.tantiation. If the nuber of subscriptless, bound variables plus one is
ý_7eater ttr, the number of like letters followed by subscript strings of

e herh (e.g., u., Uzwv, pv plus the number of subscriptless, bound
"l-•v•ri z_, then the subscriptless, bound variables and parentheses are placed

-the unbound variable. On the other hand, if this is not the case (the
nz.er o f un~boound, subscriptless variables plus 1 is not greater), then the
su2bscrined letters in the terms which qualified are instantiated with the
"�ubo:'.d variable, parentheses are dropped, and the bounded, subscriptless
v-_aiales are each instantiated with a representative subscripted term vhich
has just had its subscripts instantiated with the bound variable. After all
this, iany first symbols following the predicate letters have not yet been
in.stantiated, the process is repeated starting with the copy of list 1 as it
is no- (af-ter the partial instantiation).

8



At this point we have instantiated the first symbol place following all
predicate letters on list 1. Before going to the second symbol position, we

must consider the effects of our instantiations made in symbol position 1.

Whenever an instantiation is made in a quantificational formula, every occur-
rence of the variable within the scope of the quantifier must be instantiated
in the same way. Each time, therefore, an instantiation is made in a p-articu-
lar F, it must be similarly made for each occurrence of the bound variable
in each similar F in all lists. This, of course, is done by means of the
location information following the predicate strings on all lists.

We are now in a position to examine position 2 (still on list 1) for
purposes of instantiation. The procedures will be identical with those dis-
cussed above for position I except that now we have an added criterion. Since
the symbols in position 1 have been partitioned into sections of identical
lexicon members, we now wish to instantiate in position 2 as to match the
partition of position 1 as closely as possible. The procedure is as follows:
instantiations of position 2 are made as outlined for position 1 and each
result stored. That is, the partitions of position 2 may be different, and
if so, each is stored. Each partition (instantiation pattern) is then com-
pared with the partitioning of position 1. The one that matches best is
chosen as the instantiation of position 2. The procedure then continues with
position 3, which is compared with position 2; and so forth. (Better still,
but still not optimal, is that position n ought to be compared with positions
1, 2, ... , n-l, and maximized for match, but for simplicity, and since it
does not seem to have an important effect, this wrill not be done here.) Each
time an instantiation is chosen, then each occurrence of the bound variable,
again, is similarly instantiated if occurring within the same F.

"When all instantiations on list 1 have been determined, we proceed in an
identical fashion writh list 2, then list 3, etc. When this process is com-
plete we are ready for the next phase of the overall machine procedure, name-
ly, the test for a truth-functional contradiction.

The truth-functional forms are built from a copy of the set of F's with-
out quantifiers and wTith the instantiations as now appear on the lists of
predicate types. The test procedure for the truth-functional contradiction
will be discussed in the next section. If the truth-functional test at this
point assures us of a contradiction, our machine procedure concludes that the
original argument was valid. If, however, we are unable to find a contra-
diction, we must make an appropriate modification and a new attempt at forcing
a truth-functional contradiction. The motivation for the renewed attempt pro-
cedures we have chosen is given after its procedures are described.

We renumber the previously mentioned lists of predicates as follows:
1 becomes 2, 2 becomes 3, ... , m-1 becomes m, and m becomes 1. Then the
entire procedure for instantiation and the truth-functional test is repeated
on a new copy of the original predicate lists. If the condition occurs that
the list originally numbered 1 progresses to the point where it is now num-

.bered m and still the truth-functional test fails, then the machine procedure
is unable to conclude anything about the original quantificational argument
and the machine halts.

The reasoning behind the above change in the list numbering, as a basis
for our renewed attempts to derive a truth-functional contradiction, can be

9



seen from the following example: suppose the following lists had been origi-

nally formed by the scan of some F's:

List 1 Pw, F1, 1

P(x), F2 , 1

P(ux), F3, 1

List 2 H(x), F2, 1

H(yx), F2 , 2

Our procedure would instantiate P (x) on list 1 line 2 as Pw, since our pro-
cedure would instantiate Pux for P(x) only if there would be a resulting gain
as far as the number of like predicate strings is concerned, which in this
case does not happen. This instantiation of w for (x) forces H(x) of list 2
line 1 to be instantiated by Hw. This would make it impossible to instanti-
ate H(yx) so as to be identical with IN. Suppose further that no contra-
diction could be found in the truth-functional instances unless the two nre-
dicates on list 2 are instantiated with the same lexical member. Thus, unless
we instantiate list 2 first, no contradiction can be found, and although the
original argument is valid we will not find it so by not extending our in-
stantiation procedure. Ncw, by instantiating list 2 first: Hy , Hy.x, Pw,
PYx, Pux will be obtained and will result in our machine procedure oeing able
to state that the original argment is valid.

d. Testing for Truth-Functional Inconsistency

After a lexical instantiation of the functional normal forms, they are
no longer a set of quantificational formulas, but a~e then a set of truth-
functional formulas. At this stage of the overall procedure, the set must be
tested for a contradiction. That is, the question must be answere&d-s to
whether or not it is possible to assign values of true or false to the "truth-
functional atoms" (the sallest grouping of letters that can take on a truth-
value in the set of formulas, i.e., "GUaa", or "HYxaaxa", etc.) so as to get
all formulas of the set at once, that is, the same truth-value to all occur-
rences of like symbols throughout the set of formulas. If the answer is no,
that is, no such assignment is possible, then the set is said to be truth-
functionally inconsistent, and our procedure assures us that the original
argument presented to the machine for test is valid.

Questions such as the one above, concerned with whether or not a set of
truth-functional formulas is contradictory, consistent, inconsistent, etc.,
are all decidable, since truth-tables can always, in theorybe used in a
machine decision procedure. There are many machine procedures that have been
designed to answer such questions about truth-functional formulas. Each de-
signed to be far more efficient than a brute force table-building procedure.
(See for example reference 8.)
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Rather than attempt tU iesign a different method of testing for truth-
functional inconsistency, wh-ph would probably not be as good as the above
mentioned works, we will assme that one of the existing methods has been
adapted to our needs.

A Sua of the Syntactical Devices Required for an
Efficient Machine Realization

In our discussions of the processes that are involved in the machine
attack on the problem, certain processing devices and capabilities were as-
sumed to exist, i.e., scanning registers, forming and interrogating lists of
information, etc. None of the processes used are beyond the capabilities of
existing machines or some programming languages in todays technology. We
will here summarize informally certain functions that would be desirable to
any machine or language given the job of realizing the overall machine pro-
cedure of this thesis.

The machine must have a list of variable names, and a list of individual
names, both stored in the machine before any given problem can be worked on.
The lists must be mutually exclusive. The machine may also have a list of
predicate letters, and a list of sentential letters, and if these were also
mutually exclusive lists it would simplify the procedure somewhat. This is
not absolutely necessary, however. If the machine can, as a minimum, recog-
nize capital letters, and if a capital letter is followed by a variable ne
or an individual name, then it is a predicate letter, otherwise it is a sen-
tential letter.

The machine* will have a general storage area that will store strings of
symbols, the strings being of variable length, and lists of information (e.g.,
predicate letters and strings of symbols) of variable depth. The strings and
lists will be stored with an addressing capability as follows: a string
named, e.g., F2 will be stored in a location also called "F2". Therefore, the
machine can "store string P3," or "put string F1 into the A-register", etc.
The machine will also handle lists in a similar way. We can say, for example,
"store list 1", or "interrogate list 3 for the following...". Another impor-
tant machine function will be the ability to duplicate a string or a list.
This capability was used throughout our program, and seems to be an important
function in problems of this nature.W*

The machine will have a general working register that will be able to
nold a string of symbols. The register will be flexible in the sense of being
able to hold strings of variable length. Parts of the string held in this
register can be replaced by strings which need not be the same size as the
parts they are replacing. Therefore, the result of such a replacement may be
a string in this working register of equal, smaller, or longer length. The
register will be composed of cells which will hold basic symbols of our
system, e.g., a cell might hold a predicate letter, a "P", a variable name,
a "(", etc. These cells will be interrogated usually by a left to right scan,
and the machine will react as a function of the symbol found in the particular

* We will now be referring to an "ideal machine (program or hardware) for the
mechanization of our procedures.
** It is obviously connected with trial and error techniques.
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cell under interrogation. We will usUly use this capability as follows.
we want to ask if some string X is the head of the contents of the vorking
register (i.e., if X concatenated with Y is the contents of the working
register). X might be of the foz "(", concatenated with a general name of
some type of symbol, followed by ")". The machine will be aided in situations
of this sort by table look-up procedures to determine whether symbols are of
such and such type, or of such and such a class.

The machine is able to concatenate onto, or deconcatenate from, either
end of this working register. The machine can store the contents of the
working register into general storage, clearing, or not clearing itself, as
it does so. We can call strings from general storage into the working regis-
ter, each such operation will clear the previous contents, if any, of the
working register.

The machine also has an auxiliary register that can be cleared, strings
can be copied from it, and strings can be concatenated onto either end of its
contents. It must also be capable of holding strings of variable lengths.
Frequently used capabilities will be: deconcatenate a string X from the
working register and concatenate to the right of the contents of the aux-
iliary register. Or, replace by the contents of the auxiliary register, each
occurrence in the string contained in the working rerister, of the symbol y.

With regard to the realization of our machine procedure on a computer,
symbol manipulation languages are well-suited to problems of this nature.
Comit, a new user-oriented general purpose symbol manipulating programming
language9 seems to be the one best suited to our problem. The language was
designed to make operations on strings of information extremely easy to per-
form, and very natural to use. When we spoke of placing strings of arbitrary
length, and lists of arbitrary depth into a general storage area, this storage
area in Comit would be the "shelves" of the language. The general working
register of which we spoke would be Comit's "workspace". The auxiliary regis-
ter that we needed could be any shelf, since, among other operations, Comit
allows concatenation or deconcatenation on the left or right of any shelved
string. Scanning a string in the workspace of Comit and performing insertions
or deletions is the most powerful feature of the Comit system, since it gives
one a feeling of naturalness in not having to worry about such things as al-
location, overflow, register size, etc. Strings, perhaps representing lists,
can be duplicated easily within the system. The Comit system is highly recom-
mended to anyone interested in machine solutions for problems which require
programming techniques similar to those discussed.

An Illustration of the Machine Operating on a Problem*

Given: P1  (x)(Ey)((Fx. ^aGx) P exy.Jy))

P2  (v) (x) ( (Kw- (Hwx.1 Kx))

P3  (x)(Kx ,--, Gx)

S(x) -- (KX.Jx) This last Line is
the negation of the
conclusion which follows
frm the first three lines.

*The argumnt used in the illustration is from Quine, reference 1.
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First Phase: The Machine Formation of the Functional Normal Foms

A-Register S-Register

Time 1 (empty) (empty)

Time 2 (x) (Ey) ((Fx..~ Gx) 'Z (Hxy. Jy)) (empty)

Time 3 (x)W()((ft. Ox) ý (Exy.3Y)) x

Tim 4 (x)((Px. Gx) = (H•Xy.JyX)) x

Time 5 (empty) (empty)

The contents of the A-Register vere transferred to storage location
n=ed "IFl.

Time 6 ... The above process continues for P2 . P3V and P4 .

Second Phase: The L.achine Instantiation

The F's determined from Phase 1 are:

Fl. (x) ( (Fx. --I Gx) 'ý (iFx- .Jy)

F 2 (K x:, . , • : ) )

F3  (x)(Kx • , Gx)

T-•e machine proceeds as outlined on pages 7 and 8 forming the follow-
ing lists:

0

List 1 F(x), FI, 1

F ui, F2 , 1

List 2 G(x), Fl, 1

G(x), Fý3, 1

H v Wt) F•,
List 3 H(yx)I, FI, 1

z(x), F4, 1

List -5 - ,F 2 ,,.

K(x), -,2 2
(x), � 3 ,1



The first instantiation attempt evolves as follows:

List 1 N',r F, 13 x) Wvas instantiated as v, therefore,
ea.h occurrence of the bound variable x

FN' F2. 1 in formula F3. is determined as w.

List 2 Ow, FI 1

G(x), F 3 1

List 3 Ew (y,), P2, 1

List 4 J Yw- FI., 1

J(x), FV, 1

List 5 X v, F2 -,

K(x), r2' 2

K(x), F3, 1

KX), FL, 1

Continuing the process:

List 1 F w, FZ, 1

F Vj F2 - 1

List 2 G 1, FI, 1

.G i, F3 , Y (x) was instantiated as w, therefore,
each bound x in formula F is determined as v.

List 3 H w(Y), F1 , 1

E v(x), 2 -1

List 4 J Yw l F 1, 1

3(X), Fj4.. 1

List 5 K V, F2 , 1

K(x), 1F 2 , 2

K w, F3 , 1

K P4. 1~



0oUUiM the process:

Listi1 7 vp Is 1 1

F VP 72S 1

List 2 G vp Flo 1

G V, F2, 1

List 3 H1V Y~,Flo 1

H vy,,,P 2-'1l vais instantate a for W in
list 4 gives rise to the 1ol1owing
truth-twzctional form:

.. . ,-€ OW) -n (RWYV. ,yV)

2. Kv *v N y --7 v

3. K• O

Since Kv and PN ust be true (o 2) then Ow must be false (from 3).
HYwv and Jyv must therefore be true since (N. ~ •w) is true (from 1). Nv
must be true since Bvyv is true (from 2) Jyv must be false, since Kv is true
(from 4). But Jyw cannot be true and false, therefore the set of trth-
functional forms is contradictory. And, therefore, the originl argment:

(x)(I-)((Fx. - x• ) - (N,•y.,))

.(Ex)(x)((Kv.N.(,-x P Kx))

- ....... ( ) x - ZA)

therefore, (EX)(xz.,j,) is valid.
Problems for Future Research

Nov can one coopare the problem-solving power of the machne procedure
of this report with other known methods?

If the machine fails to find a proof, how can further attepts be made
by an extended mwchine to increase the overall power of the procedre?

Give a proof that the sin heuristic., n=I making all strings following
Like predicate letters identical, is the best goal with respect to forcing a
truth-ftmtiowal .cotradiction.

Is the mthod used in the attet at getting the preficate strings
identical the best one?
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